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RATE OF CONVERGENCE OF A STOCHASTIC PARTICLE METHOD 
FOR THE KOLMOGOROV EQUATION 

WITH VARIABLE COEFFICIENTS 

PIERRE BERNARD, DENIS TALAY, AND LUCIANO TUBARO 

ABSTRACT. In a recent paper, E. G. Puckett proposed a stochastic particle 
method for the nonlinear diffusion-reaction PDE in [0, T] x R (the so-called 
"KPP" (Kolmogorov-Petrovskii-Piskunov) equation): 

{ u= Au = Au + f(u), 

U(0, *) = uo(*), 

where 1 - uo is the cumulative function, supposed to be smooth enough, of 
a probability distribution, and f is a function describing the reaction. His 
justification of the method and his analysis of the error were based on a splitting 
of the operator A . He proved that, if h is the time discretization step and N 
the number of particles used in the algorithm, one can obtain an upper bound 
of the norm of the random error on u(T, x) in L'(Q x R) of order 1/N!/4, 
provided h = &( 1/N14), but conjectured, from numerical experiments, that 
it should be of order &(h) + I( 1 /VN), without any relation between h and 
N. 

We prove that conjecture. We also construct a similar stochastic particle 
method for more general nonlinear diffusion-reaction-convection PDEs 

{ = Lu + f(u), Ft 

U(0, *)=uO(*), 

where L is a strongly elliptic second-order operator with smooth coefficients, 
and prove that the preceding rate of convergence still holds when the coefficients 
of L are constant, and in the other case is &(v7h) + &(1 /VN) . 

The construction of the method and the analysis of the error are based on a 
stochastic representation formula of the exact solution u . 

1. INTRODUCTION 

1.1. Setting of the problem. In a recent paper [12], E. G. Puckett proposed a 
stochastic particle method for the nonlinear PDE in [0, T] x IR: 

a = AU = AU + f(u), 
u A0, *) = UOH, 

where 1 - uo is the cumulative function, supposed to be smooth enough, of a 
probability distribution, and f is a function satisfying properties ensuring, in 
particular, that the solution u(t, x) takes values in [0, 1]. 
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His justification of the method and his analysis of the error were based on 
a splitting of the operator A; a rough presentation of the algorithm is the 
following: 

(A) Initialization: One locates N particles on the real axis at positions x0 
with weights cb (i = 1, ... , N) of order N, such that the function' u(O, x) = 

Z= wbco'H(x6 - x) is a good approximation of u0 in L1 (R). 
(B) Approximation of the reaction: One numerically solves the ODE 

Iat= f(v), 
v(O,*) =1(O,.) 

on a time interval of length h (this operation changes the weights of the parti- 
cles). 

(C) Approximation of the diffusion: One numerically solves 

Iw -Aw 
lw(O, *)=v(h,*) 

by randomly and independently moving the particles, considered as independent 
Brownian particles, during a time interval equal to h, each particle keeping its 
own weight. 

(D) Computation of the approximate solution: The value at time h and point 
x of the approximate solution, ii(h, x), is obtained by adding the weights of 
all the particles which are at the right-hand side of x. 

(E) Iteration: At each time step, one performs the operations (B) (using 
ui(ph, *) instead of ui(0, *)), (C), and (D). 

The upper bound of the random error on u(T, x) in LI(Q x R) is shown 
to be of order 1 /N'/4, provided h =&( 1NI4). 

In the last section of the paper, Puckett presents numerical results which 
obviously show that this estimation is very pessimistic and conjectures that the 
rate of convergence should be of order & (h) + &(1/ VN), without any relation 
between h and N. 

We tried to prove this conjecture by keeping the idea of the splitting but 
changing the technique used by Puckett to obtain some of his estimations. We 
could obtain a better rate of convergence than 1/NI/4 (we got 1/N217 pro- 
vided h is of order 1/N2!7), but we could neither get the right one, nor avoid 
a relation between h and N, mainly because we had to sum up the approxi- 
mation errors made at each step on the solution of the following PDE, where 
the initial condition ui(ph,) is the approximate solution computed at step 

a t9W 
= Aw, 

w(O, *)= (ph,) 
and these local errors appear to be of order aht1 . 

Besides, the notion of splitting does not represent the basic operation of the 
algorithm, which is the approximation of the measure 4 u(t, x) dx by a linear 
combination of Dirac measures at points defined by the current positions of the 
particles, and coefficients in the combination equal to the respective weights. 

1ln the sequel, H will denote the Heaviside function: H(y) = 0 for y < 0, H(y) = 1 for 
y > ? . 
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Thus, we were led to change our point of view. 
Our objective was also to extend the algorithm to more general nonlinear 

reaction-diffusion-convection PDEs, namely, 
au Au = Lu + f(u) 

1 u(O,) uo() 

where L is a strongly elliptic second-order operator with smooth coefficients. 
A natural question is then: what must be the law of the motion of the particles? 
A natural attempt is to move the particles according to the law of a diffusion 
process whose infinitesimal generator is L, but then one can see the computed 
solution (considered as a wave) propagate in the opposite direction to the prop- 
agation direction of the exact solution! 

The answers to this question and to the determination of the rate of con- 
vergence of the algorithm that we will construct (which reduces to the Puckett 
algorithm when L = A) are based upon an interpretation of the method com- 
pletely different from the splitting of A in (1.1), and an analysis of the error 
completely different from Puckett's one. The main tool will be a probabilistic 
representation formula of the exact solution, which will be used to get estimates 
on the rate of convergence. We emphasize that, applied to the Puckett algorithm 
for the KPP equation, our estimates below prove Puckett's conjecture. 

We also stress that the stochastic particle algorithm we analyze is not the only 
one that can be developed for nonlinear reaction-convection-diffusion equations. 
In particular, Sherman and Peskin have proposed a numerical method (without 
proving convergence) in [ 14], based upon the simulation of branching Brownian 
motions; the term f(u) is used to describe the law of the branching. For 
the convergence and the analysis of this algorithm, see the papers of Chauvin 
and Rouault [5, 4, 3]. The main difference between the two algorithms is the 
following: the Sherman-Peskin particles have constant weights, but are highly 
dependent (they are the living particles of the branching process); the Puckett 
particles are independent, but the weights are dependent. For a finite horizon 
problem, the Puckett method seems to be simpler to implement and easier to 
use on a parallel computer; but if the problem is, for example, to study the 
asymptotic propagation velocity of a wave, then the Puckett algorithm cannot 
be efficient, because there is no reason at all for it to be stable (see our results 
on the rate of convergence); in that case, the Sherman-Peskin method must 
be preferred, since it is naturally related to the evolution of the solution, the 
particles concentration being large where the gradient of the solution is large. 

Our paper is organized as follows: in ?2, we state our hypotheses and we 
present a collection of elementary results, which are frequently used in the 
sequel; then, in ?3, we establish an original stochastic representation of the 
solution of the above nonlinear PDE; this formula permits us to construct a 
stochastic particle method, which reduces to the splitting method of Puckett 
when the coefficients of L are constant; in ?4, we state our result on the rate of 
convergence; before proving it (??6 and 7), we need to study in a precise way how 
dependent the weights of the particles are: this is done in ?5. Finally (?8), we 
consider the special case of constant coefficients. The Supplement contains some 
of the proofs (? 10) and an Appendix devoted to reaction-diffusion-convection 
PDEs. 

Our numerical experiments for nonconstant-coefficient examples do not add 
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information to the excellent last section of the paper of Puckett (devoted to the 
KPP equation), so that we refer to it. 

1.2. Notation, conventions. In the sequel, C will denote any deterministic 
strictly positive constant independent of the time discretization step h and the 
number of particles N (but, most often, it will depend on T). 

We will always assume h e (0, 1), of the form T-, where M is an integer. 
When a stochastic process (Xt) is such that XO = y a.s. for some real number 

y, we will often write (Xt(y)) - 
When we write & (h) or ( N ), etc., it must be understood that the quantity 

involved (which may be random) can be bounded, uniformly in co if it is 
random, by, respectively, Ch or c, the constant C being deterministic and 
uniform with respect to h and N. 

2. HYPOTHESES AND ELEMENTARY RESULTS 

2.1. Hypotheses. We make the following assumptions: 
(HI) f is a C2 function on [0, 1] such that f(O) = f(l) = 0, f(u) > 0 

for u e [0, 1] (therefore, f(u) is bounded in (0, 1] and continuous in 0); U 

(H2) b, a are two bounded C?? functions; any derivative of any order is 
assumed to be a bounded function; a is bounded below by a strictly positive 
constant; 

(H3) 1 - uO is the cumulative function of a probability distribution. 
In the Appendix (see the Supplement), we recall that, under (H 1), (H2), (H3), 

for any T > 0, there exists a unique classical solution in (0, T] x R, taking 
values in [0, 1], to the problem 

(2.1) { a=Lu+f(u), 
limt 0 u(t, *) = uo(.) at every continuity point of uo, 

where 
0 12 02 

L= b(x)a + a 2(X) a2 

In the sequel, we will often need an additional assumption on uo: 
(H4) uO is of class 'bO (IR), and there exist strictly positive constants C1, C2 

such that, for any x in XR, Iu (x)I < CieC2x , or 
(H5) uO is of the form 

N 

uo(x) = EZoH(xo - x), 
i=l 

where the co 's are positive and such that 

N 

i=l 

2.2. Elementary results. In this subsection, we will state easy consequences of 
quite classical results, needed in the sequel. 

We begin with the obvious (but useful) inequality: 

+2 2 2 (2.2) Vx > , / e-Y dy <Ce _X2 
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We derive some consequences of (H2). 
Let (Ct) be a diffusion process whose infinitesimal generator has bounded 

and Cbg' (R) coefficients bo and ao, and is strictly elliptic. 
We have the well-known property (see, for instance, Friedman [6]): under 

(H2), there exist C > 0, A > 0 such that, for the density pt(y, z) of the law 
of St(y) (y, zE R, 0<t< T),wehave 

(2.3) Pt(Y, z) < ? exp (z Y)2) 

Therefore (for (iii) we apply (2.2)): 

Corollary 2.1. Let (Ct) be a diffusion process whose infinitesimal generator has 
bounded and Cbj7 (R) coefficients, and is strictly elliptic. Then there exist C > 0 
and A > O such that for all t with 0 < t < T and for all x, y e R, we have 

(i) 

lP(ct(y) <x) < .a| exp(- 2y) dz, 

(ii) 
C ff00 /(z-y)2\ 

P(ct(Y) > x) < a X exp 2At )dz 

(iii) 

P(ct(y) < X)P(ct(y) > x) < C exp (- (Y2t 

Besides, we observe that, under the above hypotheses, there exists a constant 
C > 0 such that 

(2.4) VO<t<T, VyeR, EjXt(y)-y?<Cvt 
and2 

(2.5) Vt > 0, lim St(Y) = +ox a.s. 
y +00 

because the function y - Xt(y) is a.s. increasing since its derivative is an ex- 
ponential. 

Lemma 2.2. Under the above hypotheses on (ct), there exists a C > 0 such that 
for any T > t > 0, the probability density pt(x, y) of the law of Xt(x) satisfies 

|pt(x, y) dx - I < Ct 

for any y e R. 

The proof is in the Supplement. 
We recall that we denote by bo(.) and ao(.), respectively, the drift and the 

diffusion coefficients of (Ct). Let (Bt) be a standard real Brownian motion. 
The Euler scheme is defined by 

(2.6) 4p+l = Sp + bo(Sp)h + qo(4p)(B(p+l)h -Bph) 

2See Kunita [8, Chapter 2], e.g., for the diffeomorphism property of stochastic flows associated 
with stochastic differential equations. 
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and the Milshtein scheme is defined by 

Cp+l = Cp + bo(Cp)h + a70(CP)(B(p+1)h -Bph) 

(2.7) + 2ao (p)ao(4p)((B(p+l)h -Bp 
- h). 

We now recall a result on the convergence rate (the first part is easy to show; 
the second is due to Milshtein [9]). 

Proposition 2.3. Suppose that the functions bo and ao are of class Coo, and 
that any derivative is uniformly bounded. For the Milshtein scheme, we have 

(i) For any k e N* and for any initial condition Co such that EIC0o2k < oo, 
there exists a strictly positive constant C (depending only on T, and the bounds 
of bo, a0, and their two first derivatives) such that 

(2.8) VMEN*, Vh= 
T 

VP = I, ..., M, 

ElCph 12k + E|;p 12k < C( 1 + El Co 12k ) 

(ii) There exists a positive constant C such that, for any initial condition y, 

(2.9) ElCh _Z112 < Ch3 

and, for any p = 1, ..., M = h' 

(2.10) ElCph _p1 < Ch 2. 

Remark 2.4. When ao is not a constant function, for the Euler scheme, one 
generically has 

(2.11) El Cph_ p12 < Ch. 

When bo and a0 are constant functions, there is no approximation error. 
We now state some consequences of the hypotheses (H4) or (H5). 

Remark 2.5. Under (H3), (H4), one has 

uo(x) dx + (l - uo(x)) dx 

f+00 fO 

(2.12) - / xduo(x)+/ xduo(x) 
JoJ -00 

l j Ixld(l - uo)(x) < +x. 

The hypothesis (H5) instead of (H4) implies 

+0o O N 

j+|0 uo(x) dx +J ( - uo(x)) dx < sup IwoZl ix61. 
J -oo i=l,-..., N i=1 

Lemma 2.6. Assume that uo satisfies hypotheses (H3), (H4); then there exists 
C > 0 such that 

j u(t, x)dx+ j( - u(t, x))dx <C 

for any t E [0, T]. 
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If uo satisfies (H5), then 

+00 0 N \ 
u(t, x) dx + J (1-u(t,x))dx<C |1+ sup joI E1x611 

00-O0 i=1,..,N iNJ 

The proof is in the Supplement. 
The next lemma gives a control of the error due to the permutation of the ex- 

pectation and a nonlinear function, and simply follows from a Taylor expansion 
of g(x) - g(EX). 

Lemma 2.7. Let g be a function of class C2 with bounded second derivative; 
then for any square integrable random variable X we have 

(2.13) lEg(X) -g(EX) < CE(X-EX)2. 

Finally, the next equality will be useful in several subsequent computations: 
for any y, z E IR, there holds 

(2.14) JIH(y -x) -H(z -x)ldx = ly - zl. 

3. REPRESENTATION OF THE SOLUTION OF (1.1) AND 

CONSTRUCTION OF THE ALGORITHM 

3.1. A probabilistic representation of the solution. We introduce a probability 
space (Q, 9, P) equipped with a Brownian motion (B(t)); for 0 < s < t < T, 

gst will denote the least complete a-field for which all the B, - Bu (s < u < 
v < t) are measurable. 

Theorem 3.1. Under (H1)-(H3), if uo is of class C0 (R), we have the following 
representation: 

(3.1) u(t, x) = E [H(Xt - x) exp ( f'ou(s Xs) ds)] 

where (Xt) is the solution to 

(3.2) dXt = a(Xt) dBt - {b(Xt) - a(Xt)a'(Xt)} dt. 

Here, the law of XO has a density equal to -us, and (Bt) is a standard Brownian 
motion. 

Proof. The function v (t, x) := (t, x) satisfies the following equation: 

[ 88 (t,x) = U2 2(X) 882, (t, x) + (b (x) + a (x) u'(x)) IW (t , x) 

j] + (b'(x) + f' o u(t, x))v(t, x), 
v(O x) =u (x). 

By applying the Feynman-Kac formula, we obtain 

(3.3) v(t, x) = E [u (Yt(x)) exp {j[b'(Ys(x)) + f' o u(t - s, Ys(x))] ds}] 

where (Yt) is the solution to 

(3.4) dYt = (b(Yt) + a(Yt)a'(Yt)) dt + a(Yt) dBt. 
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Consequently, recalling that 1 - u0 is increasing and that u(t, x) 1 as 
x -x -00 (see Lemma 2.6), we have 

u(t, x) = -E u o(Yt(y)) exp {f[b'(Ys(y)) + f' o u(t - s, Ys(y))] ds} dy. 

As we will see below, the particles algorithm is based on approximating the 
measure u (y) dy by a measure of type 6xi1 wOXi ; that suggests one performs 
the change of variable z = Xo, t(Y) , where go, t(.) is the flow associated with the 
stochastic differential equation (3.4). Hence, we set y = -I (z) 

Using results of the second chapter of Kunita [8], we have, for 0 < t, 
rt t 

4o1lt(z) = z - jy a(4s-(z)) dBs - f b(@-l(z)) ds, 

where dBo denotes the "backward" stochastic integral.3 
One infers that 

aa o1lt(z) = 1 - f a'(41t(z))- 1t(z) dBo - f b (4 t(z))-~1 t(z) dO, 

from which 

a -I (z) = exp ( { bf(v1t(z)) - 27t2(@1t (z))} do-f a'(4 tt (z)) dBo). 

Hence, taking into account (2.5), we have 

u(t, x) = -E [ uW(Z) 
J4 (x) 

* exp {|f (b'(4o,s(a)) + f' 0 u(t - s, Xo,s(a))) ds= } 

=o,t (z) 

* exp {f [-b'Q4S-;t(z)) - 2a'2(-5I(z))] ds 

J t(> l(z)) dBs }d z] 

One now uses Lemma 6.2 of Chapter II of Kunita [8]: for any continuous 
function g(s, x) we have 

rt t 
g(s, co0,s(a)) ds = jg(s Qs-1 (z)) ds. 
O ~~~~a=40, (Z) o 

Thus, 

u(t, x) =-E J H(-4O,t(x) + z) 
e00 

*exp Lf'o u(t - 5ss-lt(z)) ds} Mot(z)u'(z) dz 5 

3For a definition, cf. Kunita [8, end of Chapter I]. 
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where (M (z))O<t is the exponential (backward) (Yt)0<t-martingale defined 
by 

M(z) =exp {-2f a'2(4s-(z)) ds - a, u l(z))dBs} 

The application x -+ o0, t(x) is a.s. increasing (its derivative is an exponen- 
tial); thus H(-4o,t(x) + z) = H(o- 1 (z) - x) . 

Hence, 

u(t, x) = E [f H( - t (z) - x) exp{ f'o u(s t(z)) ds} Mo(z) dz] 

We observe that the law of the process (47'o t)O<O<t, on (Q, Y, 1P, %t), is 
identical to the law of the process (XO)0<o<t, solution to 

dXo = u(Xo) dBo -b(X) dO. 

Hence, E0 denoting the expectation under the law IPo for which the initial 
law of the process (X0) has a density equal to -u'(z), and (Mt) denoting the 
exponential martingale defined by 

Mt = {exp { ja 2(Xs)ds+ JC'(Xs)dBs}, 

we have 

u(t, x) =Eo [H(Xt -x) exp{ f' u(t-s, Xs) ds}Mt. 

On (0, ~, Po, %T), one performs the Girsanov transformation defined by 

I(A) := EO[AMT], A E T; 

then, for t < T, 

u(t, x) =EH(Xt-x) exp{ fou(s, Xs)ds}]. 

Under IF, the process (Xt) solves 

dXt = ((Xt) dBt - {b(Xt) - o(Xt)a'(Xt)} dt. 

Here, (Bo) defined by 

J3 =JBo -j '(Xs) ds 

is a Brownian motion under 1P. Obviously, the above representation of u is 
identical to (3.1). o 

One can deduce a result of the same type as the preceding one for a piecewise 
constant initial data u0: 

Proposition 3.2. If uo is of the form EN= oiH(xo - x), then we have 

(3.5) u(t, x) = (oE [H(Xt(xo) - x) exp {f'o u(s Xs(x)) ds}] 

ih 1 

The proof (based upon an approximation argument) is in the Supplement. 



564 PIERRE BERNARD, DENIS TALAY, AND LUCIANO TUBARO 

3.2. Principle of the algorithm. Let T > 0 be fixed, and h a time discretiza- 
tion step of type T, for some integer M. We want to approximate u(T, x). 

Approximating -u'(z) dz by col di, one gets the following approxi- 
mation formula: 

u(T, x) Z wtb'E [H(XT(X) -x) exp {jf o u(s, Xs(Xo)) dS}] 

Now, on (Q, P, ), we are given N independent Brownian motions {(Bi), 
i = 1, ..., N} with respect to the filtration (%00)0>o, simply denoted by (o) 
in the sequel. 

Let (Xi) be the (independent) solutions to the following SDEs (in forward 
time): 

{ dXi = a(Xo) dBo - {b(Xa) - a(X0)a'(X0)} dO, 

XO = xo. 
The particle algorithm replaces the expectation by a point estimation: 

N XT1d~ 
u(T, x) Zw H(XT- -) exp o u(s, X ) ds 

Then we approximate 

exp {j fou(s, X,) ds} by exp {h fo u(phX)} 

and if we define by induction 

po = Co 0 P(k+l)h = Pkhexp{hf o u(kh, Xkh)l}, 
we get, for any p = 0, 1, ..., M= T/h, 

N 

u(ph, x) Z PphH(Xph 
- x). 

i=l1 

In fact, the (Xph)'s will be, in turn, approximated by the Milshtein scheme 
(2.7) applied to (3.2): 

X = 4 - (b(Xp) - (Xp)'(Xp))h + a(Xp)(B(+l)h- Bh) 

( 3.6) + a (Xp )a'(Xp )((B( l)h-B h). 

Thus, if we define 

pom=-Cw), P(ik+1)h = Pkh exp{hf o u(kh, X')}, 
we have 

N 

u(ph, x) H E PPhH(Xp - x). 
i=l 

Actually, one considers the weights in a slightly different way in order that 
the sum of the weights is equal to 1 (this fact will be used in the sequel): 

Pkh exp{hf' o u(kh, x'} I Pkh + hf' a u(kh, Xk)Tkh 

7Pkh+ h(f o u(kh, XkV f o u(kh,Xk)) 
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where 7k (i) denotes the label number of the particle just to the right of the par- 
ticle of label i at the time kh (if the considered particle is at the rightmost posi- 
tion at time kh, we just have Pkh exp{hf'ou(kh, Xk} I fPkh+hf ou(kh, Xx)). 
That transformation of the weights corresponds to the step " RkAt" of the split- 
ting method of Puckett (cf. [12]). 

3.3. The algorithm. Finally, the algorithm will be the following: we define the 
initial weights and the initial approximation by 

I ~~~~~~N 
co =-N for i = I,... N; ao (x) = ' 

Eo(xo' - x) , 

where 

(3.7) Vi < N: xoi = Uo-l1 I--N XON =uO 
I N 

Evidently, iio(.) is a piecewise constant approximation to the initial datum 
Uo(). 

Recall that we define the approximating process by (3.6). 
We now define, in a recursive way (and using the same convention for the 

particle at the rightmost position as previously): 

(3.8) ap = (l+ + h fo uP(Xp)oup-l(x-p )) 

and 
N 

(3.9) up (x) = s?,H(X,-x) 
i=l 

for p= 1, 2, ...,M= T/h. 

Remark 3.3. All the weights, for some constant C uniform in h, N, i, and 
k, are bounded by 

(3.10) <ce)k< 

and, for any k = 1, M = T/h, the weights a4k (i =1, , N) areg(k-1)h- 
measurable (this will play an important role in the sequel). Moreover, it is easy 
to check from the definition (3.8) that, for any p = 1, ..., M = T/h, 

N 

(3.1 1) EZwei= 1. 
wi= 

By using the fact that f' and f" are bounded, and that the WOph 's are bounded 
by C/N, we have 

(3. 12) (op4 = w>i (I + hf' o ip- lI(X>)) + c(h)9 (N4 ). 

Proposition 3.4. Under the hypotheses (HI)-(H4), we have 
N 

(3.13) ZlxoI2 < C. 
i=l 
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In addition, 
N 

(3.14) -ZE l-'2 < C. 

The proof (which uses (2.8)) is in the Supplement. 

4. THE MAIN RESULT 

The main result of the paper is the following theorem. 

Theorem 4.1. (i) Under the hypotheses (Hi)-(H4), there exist strictly positive 
constants C and ho < 1 such that, for any h < ho and any N > 1, 

jju(T, *)-u(T, )IIL2(RXQ) < C + A/X) 

(ii) When the functions b and a are constant, then the rate of convergence is 
given by 

jju(T, )-u(T, )IILI(RxQ) < C +h) 

The same estimates hold for the standard deviation of IIu(T, ) - i(T, )IILI(R). 

When f- 0, the estimate (i) can be improved. Indeed, if ,go denotes 
the probability measure whose 1 - u0 is the cumulative function, and (Xt) is 
defined by 

dXt = a(Xt) dBt - {b(Xt) - a(Xt)a'(Xt)} dt, 

then, from (3.1), u(t, x) = E#oH(Xt - x) and to the error 

jju(T, )-i(T, *)IIL'(RxQ) 

contribute a statistical error 

|u(T,) NH(T- 1 
L'(Rx(Q) 

which is of order 1/IN, and an approximation error 

||1H(XT-.) _N1H(XT - 
L'(Rxfl) 

which generically is of order h when the Milshtein scheme is used. The non- 
linearity of the PDE induced by f changes the order of convergence, at least in 
our proofs. Our numerical experiments have not permitted us to check whether 
A/h is the best estimate: typically, the algorithm was extremely sensitive to h; 

when h was small, it was difficult to isolate the error due to the discretization 
from the statistical error (we could not choose N so large as it would have 
been necessary), and for different, but not small h, some numerical instabili- 
ties produced statistical and discretization errors of comparable magnitude. In 
any case, the important point seems to us that the behavior of the error can be 
described without assuming a relation between h and N. 

The gain in accuracy, when b and a are constant, is not mysterious: to give 
a feeling of what happens, suppose b _ 0 and a =_ 1; in that case, the particles 
are Brownian, and the law of the X(p+I)h - Xph 's can be simulated exactly (one 
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just has to simulate independent Gaussian variables), whereas, when a is not 
constant, one has to approximate the processes (Xti); the passage from h to 
VW is due to this approximation (see Proposition 2.3). 

We also remark that, when the coefficients are not constant, we obtained the 
above estimates after having used the Milshtein scheme, not the Euler scheme 
(compare Remark 2.1 1 and inequality (2.10)). Finally, we stress that the Euler 
and Milshtein schemes are the only schemes reasonable from the point of view 
of numerical efficiency (see Talay [16]). 

The next three sections are devoted to the proof of part (i) of this theorem. 
In ?8, we will explain what must be changed in the proof in order to obtain 
the better estimate in part (ii). Similar computations permit us to obtain the 
estimates for the standard deviation. 

5. THE WEIGHTS ARE NOT FAR FROM BEING INDEPENDENT 

The op 's are not independent, but we can choose other weights that are 
independent and approximate the wO,p's in order to get, in the sequel, useful 
estimates. 

We define pp by 

(5-1) PO )0, PP' = pp_1I(l + hf' o u((p -l)h, X('P_l)h))- 

The pp 's (i = 1, ... , N) are independent, and it is easy to show there exists 
a C > 0 such that IPP I < N 

Set ai := El,i - ppi12, and ap := sup' ap . 
The objective of this section is to prove (cf. Proposition 5.8) 

T Ch C 
Vh, Vp= 1, ...,M h p < N2 + N3. 

Remark 5.1. We observe 

WPi+l - Pp+l = cop - pp, + hwop{f' o p(X) - o u(ph, Xp)} 
+ h(, - p- )f' o u(ph, 4) 
+ hpp'{f' o u(ph, X) -f'ou(ph, Xhh)}+6 ) 

As f' o u is Lipschitz, and as X is defined by the Milshtein scheme (cf. 
Proposition 2.3), we get 

(5.2) ap+1 < a' + C EIU-p(X) u(ph,X)12+Chap +C-+C- 

We now need to get a precise estimate of E"EIip(Xp) - u(ph, 4p)12. Having 
defined 

N 

up(x) = EppjH(Xpjh - X) 

j=1 

we have 

(5.3) V/EII-U(X)p - u(ph, 4X)12 

< &/EIun(X)Up*(X)1 /EIUp*(X)u(ph, X)l. 
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An upper bound for the first term of the right-hand side will be given in ? 5.1 
below, an upper bound for the second term in ?5.2, and finally we will come 
back to the inequality (5.2) in ?5.3. 

5.1. An upper bound for EI(Xp) - u*(Xp) 12. 

Propositoin 5.2. There holds 

(5.4) E Ip i(Xp ) 
_ 

U(Xpi) 12 < 2N2ap + + Ch. 

Proof. We have 

EI Up(X )U( )12 

< 2E [ZIc4)p-pp jH(XJ-X) 

N + [2?E pIH(Yp-Y-H(Xjh - 

N CN'"~~X1HX x 

j,k=l 

j#k 

* HX-k p-i (phX) + C 

N \/4 c 

c N 

C E ~EJH( pX)H(Xph -X I 

j,k=i 

j#k 

j]i, k#i 

JH(X - )-H(Xkh - Xp)I 
C 

Therefore, to get the conclusion it remains to prove 

Lemma 5.3. For i a $ k one has 

The proof is in the Supplement. 

5.2. An upper bound for EuH(Xp) - u(ph, X)j2. For brevity, we will denote 

UN2 :=Eju(Xp) - u(ph X,)j2P 

The objective of this subsection is to prove (see (10.4) in the Supplement) 
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Proposition 5.4. There holds 

(5.5) Up < C+Ch2. 

Proof. Let uN(t, x) j1 E[H(X - x) exp(ff ' o u(s, XJ) ds)]. Then 

Up' < CElu(ph, Xp)-UN(ph, Xp)j2 

+CE{ZH(XpA-4) [coiefo fIou(s,XI)ds , 

+ CE o0[EH(Xjh -X)efo f ? (s, X) ds 

N HX X fph fOU(S X3) ds] } 

Each of the three following lemmas will deal with a term of the right-hand 
side of the preceding inequality. The proofs are in the Supplement. 

Lemma 5.5. There exists a C > 0 such that for any t e [0, TI we have 
C 

jjU(t, *)- uN(t, ~)IIL??(a) < N 

Lemma 5.6. There holds 

TpN:= E Z H(XiA -x;)jo0 { expJ f'Ou(suXJ)ds-pp}X <Ch2. 
]=1 

Lemma 5.7. There holds 

2 

N . fph c 
SN.=E|u 1JJFt .Yp)-E/WoIlY/tpH( X )exp ] f'o u(s, Xs )ds' < 

5.3. An upper bound for al. From the two previous subsections, we obtain, 
considering (5.2), (5.3), (5.4), and (5.5), 

aP+1litP +NVaPKVaP+ +/Y,+}v+CaP + N2 +N 

Proposition 5.8. We have, for all p, 

(5.6) 0 uNCh +C 

Proof. We have 

N~~~~~~ phA ) N +N 

We define by induction z0 = a0 and 

N N (Ch+Ch (VP Ch2 + Ch 

TP+1=+ETu+NphP0jfX7+}+ N2,Xs)d 
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We observe that, for any p, there holds acp <Tp . 

If, for any p, we have / < vh + 1 , then we have obtained (5.6); N NXV/N 
otherwise, there exists a j such that 

J v Nh + Ia 

{ 4 N Nv 

As (Tp) is increasing, we would then have that, for any p > j, v/ > h + 

NvW' then, for any p > j, we would also have 

Ch2 Ch 
TP+I < (I + Ch)TpN+ ChTp + N2 + N3 

from which we deduce that 

TM < (1 + Ch)M1jTj + ( 2 + Ch) (1+ Ch) -1< Ch + C 

Hence, (5.6) is true for any p. El 

6. LOCAL EXPANSION OF THE SOLUTION u(t, x) 

For the sequel we need to compare the solution u(t, x) to problem (2.1) 
with the solution v(t, x) to the problem 

(6.1) at =Lv, 

for small values of t. We can represent 

v(t, x) = E(uo(Zt(x))), 

where (Zt(x)) is the solution to the following equation: 

(6.2) dZt = b(Zt) dt + a(Zt) dBt, Zo(X) = x. 

Let P6(x, dy) be the transition probability associated with (Zt). 

Theorem 6.1. Assume the hypotheses (H1)-(H3); then for any 0 < h < 1 and 
any x E R, we have 

u(h, x) = Euo(Zh(x)) + hf(Euo(Zh(x))) + Rh(x) 

with the following estimate: 
* if uo satisfies (H4), then 

(6.3) IIRh(*)IIL1(R) < Ch2; 

. if uo belongs to a family offunctions satisfying (H5) with weights bounded 
by N, the constant C being uniform on the family, then 

(6.4) IIRh(*)IILl(R) < Ch/h + C N E4|. 

The proof is obtained by combining the propositions of this section and 
Remark 6.6: Proposition 6.3 expands u(h, x), the others give estimates of the 
norm of the remaining terms in LI (R) . 
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Remark 6.2. The proof will make it clear that the constant in (6.4) can be made 
more explicit (see the footnotes in the sequel): 

() Rh(-)IL1(R) < Chvh(N + E exp ( 8-h J)) 
(6.5) i, J, i<J 

2N 

+C N Elxol 
i=1 

This will be used to treat the special case of constant b and a (see ?8). 
Proposition 6.3. Assume the hypotheses (H1)-(H3); then for any 0 < h < 1 and 
any x e IR we have 

u(h, x) = Euo(Zh(x)) + hf(Euo(Zh(x))) + Rh(x) 

with the following estimate: 

Rh (x) 1< CE {uo(Zh(x)) {[f u(h - s, Zs(x)) ] IRh(x)I ? E { [Jo fu(h - s,Zs(x) 
ds 

+ Jf u(O, Zh_o(x)) 
dO ds 

h 

+ C | j E[uo(Zs(y)) - Euo(ZS(y))]2Ph_S(x, dy) ds 

+ ChE[uo(Zh(x)) - Euo(Zh (x))12. 

For the proof of this proposition we need the following lemma. 

Lemma 6.4. There holds 

jf(Euo(Zs(y)))Ph-s(x, dy) = f(Euo(Zh(x))) + R 

with 

IRj < Cj E[uo(Zs(y)) - Euo (Zs_(y))2Ps(x, dy) 

+ CE[uo(Zh(x)) - Euo(Zh(x))])2 
Proof of Lemma 6.4. Using Lemma 2.7, we have 

j f(Euo(Zs(y)))Ph-s(x, dy) = j Ef o uo(Zs(y))Ph-s(x , dy) + RI 

with 

jR1 1 < Cf E[uo(Zs(y))-Euo(Zh(y))]2P_s(x, dy). 

We now note that 

jEf o uo(Zs(y))Ph-s(x, dy) = Ef o uo(Zh(x)), 

from which, by applying once again Lemma 2.7, we get the conclusion. 5 

Proof of Proposition 6.3. Hypothesis (HI) implies that lf(y)/yl < C for a 
suitable C and 0 < y < 1; moreover, f(y)/y is continuous in 0. 
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By the Feynman-Kac formula, we have 

(6.6) u(h, x) =E u fo u(h -s, Zs(x)) ds [uokhkxIexP~] u(h - s, Zs (x)) f 

= Euo(Zh(x)) + Euo(Zh(x)) 

h1ex u(h -s, Zs (x))d -} 

f P {Jfu(h - s, Zs(x)) 

(6.7) Euo(Zh(x)) + Ah- 

By applying the Taylor formula, we can write 

[h f) i u(h - s, Z s(x)) 

(6.8) + = EUo(Zh(X)) ; u (h- - s()))) ds 
- exp h )f(h- s,Z(x()))) ds d 

from which we have Ah = Bh + RO with 

R0 < CEuo(Z,,(x)) f u(h -s, Zs(x)) ds] 
hio u(h -s, Zs (x)) J 

and 
hf~ fr u(h - s, Zs(x)) 

Bh = Euo(Zh(x)) f u(h -s, Zs(x)) ds 

= fO u0(Zh())f U( ( Zh-s(X)) ds 

= h |Euo(ZS(y)) u(s, y) Ph-s(x, dy) ds, 

where, in the last steps, we used the transition property of P0(x, dy). 
On the other hand, by the same argument used to obtain (6.6), we have 

Euo(Zs(y)) = u(s, y) + D(s, y) 
with, for some C > 0 large enough, 

(6.9) jD(s, y)j < CEuo(Zs(y)) J f o u(s -0, Z(Zy)) do 

Hence, we can write 
h 

Bh= J J u(s y)Ph s(x, dy)ds + Eh 

with (remembering that f(y) is uniformly bounded in [0, 1]) 
y 

( Ehl < C EUo(Zs(y)) Z ( ?)(S z(y)) dPhsp (x, dy)ds 

- C Euo(Zh(x)) S U(S - 6, ZO+h-s(X)) 
dO ds. 
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Finally, by collecting (6.7), (6.8), (6.10), we have 

thr 

u(h, x) = Euo(Zh(x)) + f f o u(s, y)Ph-5(x, dy) ds +Rh 

with 

JR' I < CEuo(Zh (x)) 

f o u(h - s, Zs(x)) d I 
{ LJo u(h - s, Zs(x)) J 

+ 
Jh jsf O u(s -6, ZO+h-5(X)) d ds 

U(S - 6, ZO+h-s(X)) 
J 

Therefore, it remains to treat fh fR f o u(s, y)Ph-s(x, dy) ds. We observe 
that 

h 

f/i f f o u(s, y)Ph-s(x, dy) ds 

rh 
= f/ f f((Euo(Zs(y)) - D(s, y))Ph-s(x, dy) ds 

rhr 
= fJi f f(Euo(Zs(y)))Ph-5(x, dy) ds + Ch 

with (using (6.9)) 

th 

IChl <?C c jD(s, y)lPhs5(x, dy) 

fh S f 0 u(s -60, Z6(y))dOPi(,y)s 
< C 1 Euo(Zs(y))o u(s -6 , Z0(y)) dOPh-s(x dy)ds 

=cf Euo(Zhi(x))s f fOU(S -6, ZO+his(X)) d6 ds. 
;U 6 - 0, Z6+h-s(X)) 

We conclude by applying Lemma 6.4. 0 

Proposition 6.5. (i) Assume that (H 1 )-(H3) hold, and that uo belongs to a family 
offunctions satisfying (HS) with weights bounded by N, the constant C being 
uniform on the family; then, for any 0 < s < h, we have 

j j E[uo(Zs(y)) - Euo(Zs(y))]2 phs(x, dy) dx < Cvih, 

where the constant C depends only on T and the coefficients of the differential 
operator L. 

(ii) If uo satisfies (H4) instead of the above condition, then we have 

jj|]E[uo(Zs(y)) - Euo(Z(y))]2P_s(x, dy) dx 
R C 

<Ch|l|7u' 1L2(]R)+ Ch'|JLu01|L2(R). 
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Proof. In the case of Hypothesis (H5) we have 

E[uo(Zs(y)) - Euo(Zs(y))]2 
N 

- Z E{wbi H(x' - Zs(y)) - E[wH(xO-ZS(y))]2 
i=l 

+2 1j E[{w obH(xo - Zs(y)) - E[oiH(x -Zs(y)) 
i<j 

*{c wojH(xi - Zs(y)) - E[wjjH(xi -Zs(; 

=: SN(y) + 2TN(y). 

Thus, using (3.10) and Corollary 2.1 (iii), we have 
N 

SN (y) = (wi)2(P(X0 > ZS(y)) - [P(xi > Zs(y))]2) 
i=1 

N 

(6. 1 1 ) = Z (ci)2p(xi > Zs(y))P(xo < Zs(y)) 
i=l 

N21 ex P N 2s) 

Therefore, 

jSN(y)Ph-s(x, dy) 

< N21: exp exp dy6 

N2 Ns (s 2A-h ) 

i=1 

from which 
c N (x - dy)dx2 

jj| SN(Y)Ph-s (x, dy) dx < -N h/. 

With similar arguments, one can show that 

TN(Y) < C Vh 

(see the details in the Supplement). 
In the case of Hypothesis (H4), we can apply the It6 formula 

uo(Zs(y)) - Euo(Zs(y)) 
s 

(6.12) - j [Luo (Z (y)) - ELuo(Z6(y))]dO 
s 

+ a (Zo (y)) u'(Zo (y)) d Wa ,\~~~~ 
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hence, 

J E[uo(ZS(y)) - Euo(Zs(y))]2Ph_s(x, dy) 

<21 E [ [Lu (Z (y) )-ELuo(Z0(y)) d] Ph-s(x, dy) 

+ 2 E [j 2(ZO(Y))U02 (ZO(Y))d6] Ph5s(x, dy) 

=2A+2B. 

We estimate A in the following way: 

r s h 
A < S I E[Luo(Z0(y))]2 dO Ph-s(x, dy) = s ' E[Luo(Z0(x))]2 dO. 

Using again (2.3), we get 

A dx< C s [Luo(z)] 2 exp ( (zX)2 dzdOdx 

- 
Cs2 j[Luo(z)]2 dz. 

In the same way we have 

B < Cs | o2(Z)ul2 (z) dx. r1 

Remark 6.6. From (6.11) and (10.5) (see the Supplement) in the preceding 
proof, we have also shown that in the case (H5) we have 

jE[uo(Zh(x)) Euo(Zh (X))2dx < CVih 

or, more precisely,4 

IE[uo(Zh(x)) -Euo(Z+(X))]2 dx<Cvh + N2- exp 08Ah 

From (6.12), in the case of Hypothesis (H4), we have 

J E[uo(Zh(x)) - Euo(Zh(X))]2 dx < Ch. 

Proposition 6.7. For 0 E [0, h], define 

( ) E (z ( f ? U(O, Zh-O(X))] V/h,o(x) := E [UO ZhxW) fO(G<hjO())] 

Then, under (H1)-(H3): 
(i) if uo satisfies (H4), there exists a C > 0 such that for all h < 1 and for 

all 0 E (0, h), we have 
11Y'h,0Q(W)IL'(R) < C; 

4See Remark 6.2. 
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(ii) if uo belongs to a family offunctions satisfying (H5) with weights bounded 
by N , the constant C being uniform on the family, there exists a C > 0 such 
that for all h < 1 andfor all 0 E (0, h), we have 

N 

Ilh,0(W)ILIL(R) 
< C+ 

C XN 
|. 

The result is an easy consequence of Lemma 2.6: see the Supplement. 
We remark that 

F h ~2 fhfuhz() 
I f X u(h s, Z(x)) ds <Ch f u(h- s, Z,(x)) ds. 

[o u(h - s, Z,(x)) uJ Jo,Z,x) 

Like the preceding proposition, one can show 

Proposition 6.8. Define 
Fh 1~~~~~~~2~ 

i/fh(X) := E if fo0u(h 
- s, Zs(x))dI h 

{(x) 
:= E uo(Zh(x)) u(h-s, Z()) ds 

Then, under the hypotheses of Proposition 6.5, 
(i) if uo satisfies (H4), there exists a C > 0 such that for all h < 1 

IlIlh()IIL'(R) < Ch2; 

(ii) if uo belongs to a family offunctions satisfying (H5) with weights bounded 
by c, the constant C being uniform on the family, there exists a C > 0 such 
that for all h < 1 

Il'h()IILL(R) < Ch 2 + N Exo )I 

7. ESTIMATE OF THE GLOBAL ERROR 

We recall the notation M = T/h. 
We are now in a position to prove the first part of our main Theorem 4.1. 
First, we write 

Iju(T, *) -tiM(.)IIL1(RXQ) < IIEUM(&)- iM(*)IIL1(RXQ) + Iju(T, E)-EiM( IILI(R)- 

In ?7.1, we will bound the first term of the right-hand side by c + C h 

in ?7.3, the second term will be bounded by N + CVh, so that the announced 
convergence rate (for general functions b and a) will be established. 

7.1. Estimate of IIEuM(.) - iM(.)IILI (R x) . Our objective is to show 

Proposition 7.1. There exists a constant C > 0 such that, for any h = T, any 
p<M,and any N, 

IIEUip ()- iP()IIL1(RxQ) < - + CV. 
Proof. Define 

N 

ip (x) = E ,pH(Xph - x). 
i=l1 
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Using (2.14) and (2.10), we have 

(7.1) -Up(.) - E(.)-p U(-) + EUP(.)IIL(RXQ) = 6(h) 

Therefore, it is sufficient to prove 

Lemma 7.2. There exists a C > 0 such that, for any N, h < 1, and p < M= 
T/h, 

Ii p(E)- Ei (p)IL1(RXn) h4 + CV. 

Proof of Lemma 7.2. We have (using the fact that the sum of the weights is 
equal to 1) 

IN 
Z (Ewip,H(Xph - x) - wp,H(Xpih - x)) dx 

J+00 N 
=Z(| Ew H(E Xph - x) - wZpH(Xph - x)) dx 

O N 

+ Z(Ew@pH(x - Xph) -XH(X-Xph)) dx. 

We will only consider the first term on the right, the second being treated in 
the same way. We use the independent weights of ?5. We have 

+oo N 

+oo N 
< f7(E[ppH(Xph - x)] - ppH(Xh-x)) dx 

f+oo N 

+1 Z E Coi - pi )H(X - x)J dx. 
i=l 

f C) N 

+] Z 1op - pp4IH(Xpih - x) dx. 

Using the independence of the pi's and of the (X')'s, and bounding the 
variance by the second moment, one gets 

+00 N 

E E(Eo4H(Xph - x) - ,pH(Xph - x)) dx 
JO i=l 

+oo N N 

E E(ppi)2H(Xph-x) dx + 2 EI l PpIXpI 

+0 C N N 

-i N > Z(X h>X) dx + 2V/ Z iX12. N P(Xpih 
lXph~~~i= 
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Now we observe that the first term of the right-hand side can be bounded from 
above by 

I o iE x exp { Y} dy dx. 

For x E [0, +oo) the function 

1 +00 (y21 5 4; 1 ~ exp - }dy 
v/2 (X-Uo '(s)) / ph 2 

is decreasing from (0, 1) to (0, 1); therefore, the definition of the xo implies 

?1E I(xu_ ())/,/exp e- 2 j dy 

f+00 ( 2 
< / exp - - dyds 

O (x- u)/ 2()) yu\p)d2 

<-J J () exp { ,d dyu(z) dz 
1 X-Z)INIAp 

< _| utz| exp -Y } dydz - C| u'(z) dz 
-00 (z -)l/ 2x 

< - j u(z) exp {-( )} dz + Cuo(x). 

Using (H4), we deduce for suitable AO > 0 

NE |exp - dy < Cexp (-2. h)) + Cuo(X), 

so that, by (2.12), 

J +00 N c 
Z P(Xph> x)dx< 

Now, by (5.6), 

N iX 12? < 
N 

W)(I EXpihI12). ( N N4 
i=1 

But (see (2.8)) 

NN N 

Z EEIXphi2 < L (1 + INX2) < C + N 
I 
Xoi2. N ElXph N +N6 

i=l i=l1= 

Then we apply (3.13). 5 

7.2. A corollary. As a corollary to the previous subsection, we have the fol- 
lowing result: 
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Lemma 7.3. Define 

Ah(N) jE [J(ii (Y) - EUTP(Y))Ph(X y) dy dx. 

There exists a C > 0 such that 

Ah(N)? ?+CV7h 

for any N, h< 1,and p<M=T/h. 
Proof. First we observe that 

A h(N) < J J E[UP(y) - ETUp(y')]2Ph(X , y) dy dx 

and by Lemma 2.2 

AA(N) < (1 + Ch)J E[Iup(y)-Edp(Y)I2dy, 

from which, by the boundedness of the function upT, 

Ah (N) ? C JEIUp(Y)-EUp(Y)I dy. 

We then apply Lemma 7.2. o 

7.3. Estimate of j/u(T, *) - EUM(.)IIL(R). For any p = 1, ..., M, define 
vp (t, x) as the solution to 

{ V = Lthp + f o vp 

V (O, x) = (x) 

and consider 

,p := IIu(ph, *) - EiUP0IIL1(R) 

(7.2) < liu(ph, )-vEp(h , )IILI(R)+ IIEvp(h, )-EEUPi()IILI(R) 

Yp bP 

We will show (cf. Proposition 7.6 below) that 

Vp , 8P < C (h2 + N)- 

We first treat 
r+00 

(p7.3)=j Evp(h, x) - Eu-p(x)I dx 
(7.3) ?0 

+ J E(1 - Vp(h, x)) - E(1 - (x))j dx. 

Our objective is to show 
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Proposition 7.4. For all p, there holds 

(7.4) 5Jp<C(h3/2+ h) 

Proof. We will only consider the first term on the right of (7.3). 
Consider (BO), a (o)-Brownian motion (see the beginning of ?3.2), and 

(tj (y)), the solution to 

(7.5) { d?o = o(7i))d(Bph+O - Bph) - {b(i1o) - 1(qo)c'(to)} dO, 
10 = Y- 

We stress that, for each 0 > 0, o(y) is independent of ph. 
We will denote by 1h(y) the approximation of 'h(Y) obtained by applying 

the Milshtein scheme (2.7) to the stochastic differential equation (7.5). 
We first note, using (3.12) and the conventions described in (1.2), that 

N 

Eup+ I1(x) =E ZCp+ I H(Xp+ -x) 
i=l 

(7.6) = EZ [)P (l + hfoTup (4)) + 6(h)6& (N)1 H(h (X)p -x) 
i=1 
N N 

- E cp H(-#h(X )-x) + hE copf' o -Up(X)H(X, - x) 

(7.7) + E&(h)6 (+) 1 H(#h(X )-x) 

N 

+ hE j copf' o u (Xi )(H(h(Xp) - x) - H(Xp- x)). 
i=1 

Therefore, 

N 

Eup+ I (x)= E op H(h h(Xp -x) 

(7.8) N 

+ hE coipf' o up( )H(Yp -x) + R(h, p, x) 
i=l 

with (we apply (2.4) and (2.8)) 

hN 
IIR(h, p, ')IILI(R+) < ChIh- + CN E Eh(Xh)I 

? Chvrh + C N2 E EIX I i=1 

hN 
< Chhf+ C +2 zE + IxI). 
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Applying (3.13), we deduce5 

h 

Now, we perform a similar expansion of Ev,+1(h, x). 
Using the representation (3.5), we can also write 

N 

(7.10) EVp+l (h, x) = E (op ( X) 
i=l 

where 

y (y, x) = EH(th (Y) -x) exp (j fp+ I (S s (ys)) ds 

Using again (2.14) and the estimate (2.9), one can check that 

y/(y, x) = EH(1h(y) -x) exp (if' o Vp+(s, s(y)) ds) + yio(h, y, x) 

with 

3C>O, VyER 1, IIYo(h, Y, )IIL1(R) < Ch312. 

Therefore, 

N 

E-vp+1(h, x) = ElZ )pH(-h(Xi )-x) 
i=l 

(7.1 1 ) NE cs' o vp+ I (s ls dsH(X-x) 

+R(h, p, x) 

with 

(7.12) jjR(h,p, P)IIL'(R+) < Chilh. 

Therefore, combining (7.11) and (7.8), in view of (7.12) and (7.9), we see 
that it remains to treat 

q$(h, x) :=E a)p (hf oip(Xf)- j of p+I7(s, ls(X))ds) H(X -X) 

and to show that its norm in LI (R+) can be bounded by Chi + Ch. 

5When f = 0, this term is absent; this permits us to justify a remark we made in ?4. 
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But 

0(h, E)I I I (R+) pEZ IXI h hf o Upp O V+(Sp s(X s )) ds] 

Furthermore, 

(7.13) 
Ephf' 

oT T V +i(s i5(X )) = 
f'(Eph7Fp+i(s, 

i (X,))) + r1(i, p, h, s) 

with 

Jr, (i, p, h, s)|I < CEgph |Vp+l (s 65() -Es ph-Fp+l (S, qS( p))12. 

We now expand f(Egh 7+1(s 6 5(Xp))) - 
Let (ls) be N independent copies of the process (ins). The representation 

(3.5) permits us to write 

N\ 

f(eFlphVp+1(s, ,(X))) = Sf EphE ZwkH(s(Xk) _i (XP))) 
k=l 

+ 6(h) + a -N 

Then, if we define 

r2(i, p, h, s) := f (Eph o 4H(qs(Xt) - ?Is' 

- (E CtP H(Xp -Xp) 

we get 

f(E9phlP^V+l(s, 11S(Xp 

wp t H(X-k y ) + e(h) + r2(i,p, h,s) + -N 

= -aop( p+ 6(h) +r2(i, p,5h,5s)+(N). 

Thus, we have obtained 

N .h 

110(h, *)IIL'(R+) <E cox;p (Ch2+ Jrrl(i,p, h, O) jdO 

h h 
+j Ir2(i, P,h,0)Id + C )N 
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As above (see (3.14)), we deduce 

110(h, )IILI(R+) 

N . h 
< Ch2 + CEZi W7t I |r2(i, p h, 0) dO 

i=l1 

E+ | Efh l Vp+ I (5, ?IS (Yp )) - Eff p 56 X ) d s + C h) 
N~~~~~~~~~~ 

<Ch2 + C E ZWXp |r2(i,p, h, 6)i d6 

N N 

i =l 1 

+ <~wl~J ZCE ~ (~(~ E -l) |Ep|?EfP EOkH(6k(ph()-(i (Xp) ) d 

B 

N 

?~ ~ ~ ~~~~~~- C V2)p E(Xp-X ) d 
i= 1~~~~~~~~~= 

For A we have 
N Nh 

A < CEZ X cl)|Iip I Ep h kH-k ds, 

-EZa4H(XP -X,)sd 

i=l=? k=l 

where 
Ak :=EffhlH(Xk -4Xi) - H(qk(Xk) - 

ix ) 

The next steps to prove A < Chil + Chare given in the Supplement. 
For the term B we observe, using the independence of the particles, 

Efflh Z ( Lk{ (EH(11s (Xp -) ) -x -Eph (EH(1s (Xp) )-Y Xi 

N 

- Efflph Z (wck )2 1(EH( 1l (X) )- Y) ) (-k) )- Eflh(EH(,1s (Xp )-Y x 

k=l 
kE/i 

Hence, using (3.14), 

~~~B< C ̂ E E coi llx I < ChkA d 

We nowktreatyp.=1 

whernwtraey 
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Proposition 7.5. For all p, there holds 

(7.14) Yp+1 < (1 + Ch)/3p + Ch312 + Ch 

Proof. We use the local expansion of u(ph, .) and 7vp(.) deduced from The- 
orem 6.1. Here, Hypothesis (H2) implies that Pt(x, dy) = pt(X, y) dy . In 
addition, we apply Proposition 6.1 twice: 

* We substitute u(ph, .) to uo; then we are in the case where the initial 
condition satisfies (H4) (from (3.3), (2.3), and (H4), it is easy to obtain the 
condition on the spatial derivative), and we have 

u((p + 1)h, x) = Eu(ph, Zh(x)) + hf(Eu(ph, Zh(x))) + R 4l)h(x) 

with II Rlp+lh(&)IILI(R) < Ch2. 
* We substitute lap(.) to uo; then we are in the case where the initial con- 

dition satisfies (H5), and we have 

P+ (X)I = j Tp (Y)pY(.P y) dy + hf (j- (Y)Ph. Y) dy) + Rlh(, ) 

with 
N 

IIR(P+l)h()IL1(R) < Chili + Ch N 
i=l 

so that, using (3.14), EIIRp 1)h2( )IIL(R) < Chlh-. 

Thus, using again (2.13), we get 

YP= u(ph, Y)Ph(, y) dy + hf (ju(ph, Y)Ph(, y) dy) 

-E E jP(Y)PM(N, y)dy - hEf (J P(Y)Ph(N y) dy) 

+ Rlh(.) I 
- ERh,2l)h() 

LI(R) 

< jIu(ph,y)-Eiup(y)I ph(x,y)dxdy+Ch3I2 

+ Ch Iu(ph, y)-Eiup(Y)I Ph(x, y)dxdy 

+ Ch E (ji (Y)ph(x, y)dy-E j i p(Y)Ph(X y)dy) dx. 

Applying Lemmas 2.2 and 7.3, one obtains 

Yp+i < (1 + Ch)/3p + Ch312 + Ch 

Finally, we can prove 

Proposition 7.6. For all p, there holds 

fpl<C(v C v)K) 



A STOCHASTIC PARTICLE METHOD FOR THE KPP EQUATION 585 

Proof. We use the definition (7.2) and the estimates (7.14) and (7.4) to get 

f6p+i < (1 + Ch)Ip + Ch312+ Ch 

In the proof of Lemma 5.5, we remarked that yi = IIu(h, -) -v N (h, )IILI (R) 

can be bounded by CIIEI(uo - No)(Z(h))I IIL<(R); as u ? u0 for x< < 
C(1 + logN), using u(x) = - fj? u'(y) dy, (2.2), and (H4), we get, for some 
C > 0 large enough, 

Yi < C xj|<C+CV/i-g (0o(x) - uo(x)) dx 

+ j (C-uo(x))dx+C uo(x)jdx 

C Vlog N c 
N N 

Thus, Ih < C( I + h312 + 4) and we can proceed by induction to end the 
proof. 5 

8. THE CASE OF CONSTANT COEFFICIENTS 

In this section, we explain what must be changed in the proof to get the better 
estimate c + Ch for the error when the coefficients of L are constant. 

Without loss of generality, we can assume that b _ 0 and a =1. In that 
case we have that Xp = Xp = x0 + W1.h . 

First, one remarks that the expansion in Remark 5.1 can then be changed to 

co _- P~+i = czvi p- + hcw{f' o up(Xp) - f' o u(ph, Xp)} 

+ h(cop - pp')ff o u(ph , X)+ a &2 

so that the inequality (5.2) can be modified to 

al>+. < (1 + Ch)ap + Ch I u)p u(ph, )12 

+ CW-2Ej-9p((Xp) - u(ph, X)12 + C h 

One can readily show that (5.4) can be reduced to 

ElI up(Xp - (x D 112 < N2a, 

Therefore, with the same arguments as in the proof of Proposition 5.8, one can 
show that the inequality (5.6) can be modified to 

Ch 2 C 
(8.1) Vp, apN<C2+ N3 

This remark permits us to change the last lines of the proof of Lemma 7.2, so 
that one gets 

IIZ?p(-) - Efip(.)IIL1(RXQ) < + Ch. 
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Consequently, the conclusion of Lemma 7.3 becomes: there exists a constant 
C > 0 such that 

Ah(N) < C + Ch 

for any N, h < 1 and p < M= T/h. 
Now, we recall the inequality (6.5). This permits us to modify the beginning 

of the proof of Proposition 7.5 in the following way: 

7p+i =ju(ph, Y)Ph(, y) dy + hf (U(ph, Y)Ph(, y) dy) 

-E j ip(Y)Ph(', y) dy - hEf (j ip(Y)ph(, y) dy) 

+ R(P+ 1)h() + ERp Pl()h(*) (p+ ~~~~~L'(R) 

< jlu(ph,y)-Eiup(y)l ph(x,y)dxdy+Ch2+C hj 

? Ch lu(ph, y) - EUP(y)I Ph(X, y) dxdy 

+Ch E (jTP (Y)Ph (X,y)dy-EjiP(Y)Ph(x,y)dy) d. 

Thus, it remains to check that we can improve the estimate for 5p . Namely, 
instead of (7.4), we have 

Vp 5 (5p < C ,h2 

Actually, one just has to consider (7.6) and (7.10): now h (X,) and Ih(4) 
are equal, thus the conclusion is straightforward. 

9. CONCLUSION 

We have constructed a stochastic particle algorithm for general one-dimen- 
sional reaction-diffusion-convection PDEs, by establishing a convenient proba- 
bilistic representation of the solution and discretizing it in space and time. 

We have given its rate of convergence, which also proves a conjecture of 
Puckett concerning this method for the KPP equation. 
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